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Abstract
It is shown that a (1 + 1)-dimensional lattice Boltzmann discretization of the
Klein–Gordon and Dirac equations complies with equal-time-commutation-
relations. As a result, the lattice Boltzmann discretization leads to a consistent
lattice formulation of the quantum field theory in 1 + 1 dimensions. The
present kinetic approach may offer a significant simplification over previous
Hamiltonian formulations, because the quantum fields move along simple
classical trajectories defined by the causal lightcones. This should facilitate
both analytical manipulations and symbolic computer implementations of the
method.

PACS numbers: 47.15.−x, 67.40.Hf, 82.45.Jn

1. Introduction

In the last decade, the lattice Boltzmann (LB) method has emerged as a powerful technique
for the numerical simulation of complex flows [1].

Although the overwhelming majority of LB applications to date have been directed
towards the study of classical fluid problems, over the years, a group of authors has also
unravelled the potential of the LB representation for the solution of single- and many-body
quantum-mechanical problems [2].

Quantum lattice Boltzmann (QLB) schemes are based on the idea of encoding the quantum
wavefunction into a complex distribution, which is then evolved in close analogy with the
classical Boltzmann distribution.

The advantage of such representation is that streaming (kinetic energy operator) proceeds
along straight trajectories defined by classical lightcones, whereas interactions (potential
energy) are completely local in space and time, as it is indeed appropriate for a relativistic
field-theoretical framework. This leads to a very regular and structured spacetime flow of
information, with a number of interesting properties, such as built-in causality and Lorentz
invariance [3]1.

1 Quantum lattice Boltzmann and quantum lattice gas algorithms come in two flavours, usually named type-I and
type-II. The former addresses genuinely quantum problems, while the latter targets classical problems and can be
reproduced by a classical LB scheme. In this sense, only type-I bears some relevance to the present work.
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To date, QLB schemes have been confined to the framework of single-particle and many-
particle quantum mechanics. In this paper, it is shown that the QLB formalism can be
further extended to the case of quantum field theory, at least in 1 + 1-dimensions. This is
achieved by promoting the complex distribution to the status of a complex-valued operator
field, and showing that the discrete evolution of this operator field is compliant with equal-
time-commutation-relations (ETCR).

As a result, QLB schemes may represent a new suitable candidate for the
numerical/symbolic simulation of quantum field theory on a lattice.

2. Free Klein–Gordon equation

We begin by considering the Boltzmann formulation of the relativistic wave equation for a
free massive particle in 1 + 1 dimensions [5, 6]:

∂tψ
−(x, t) − c∂xψ

−(x, t) = −iωcψ
+ (1)

∂tψ
+(x, t) + c∂xψ

+(x, t) = −iωcψ
− (2)

where ωc = mc2/h̄ is the Compton frequency of a material particle of mass m.
As it was shown in [5], a discrete unitary-scheme is obtained by integrating the streaming

terms along the lightcones dxj = cj dt , where j = ∓ denote the left/right walker and
cj = ∓c, while the ‘collision’ term on the right-hand side is treated with a Cranck–Nicolson
time marching (arithmetic average between times t and t + dt).

The resulting discrete scheme can be cast in a compact transfer-matrix form (for details
see [5]):

ψj(x + cj dt; t + dt) =
∑
k=∓

Tjkψk(x; t) (3)

where x and t are discrete spacetime coordinates and Tjk is the discrete transfer matrix.
Note that the lightcone condition dxj = cj dt guarantees that ψj lives on lattice sites

xj = x + dxj at all discrete times tn = n dt .
The explicit expression of the transfer matrix elements is as follows:

T−,− = T+,+ = (1 − m2/4)/(1 + m2/4),

T−,+ = T+,− = −im/(1 + m2/4).
(4)

where we have set m = ωc dt .
Let us now promote the scalars ψj to operator fields: the effect of the operator ψj(x; t)

is to generate a particle of speed cj at spacetime location (x, t).
As a result, 〈ψj(x, t〉 represents the probability of finding a particle of speed cj at

spacetime location (x, t), and the higher order moments µq(x, t) ≡ 〈ψj(x, t)q〉 − 〈ψj(x, t)〉q
provide the qth order fluctuations around this mean.

The full set of moments is tantamount to a complete knowledge of the quantum field.
According to the spirit of second quantization, in the above, the brackets stand for

average over the initial configuration, so that the knowledge of the operator ψj(x, t) in terms
of ψj(x, t = 0) provides full knowledge of the system observables at any time t > 0.

The basic requirement for the discrete operator equation (3) to define a consistent lattice
quantum field theory is that the equal-time commutation relations (ETCR) be satisfied at all
times. These read as follows [7–9]:

C�(x, y; t) ≡ [ψ�(x; t), ψ(y; t)] = ih̄δ(x − y) (5)
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C(x, y; t) ≡ [ψ(x; t), ψ(y; t)] = 0 (6)

C��, y; t) ≡ [ψ�(x; t), ψ�(y; t)] = 0 (7)

In terms of the discrete velocity degrees of freedom, ψ = ∑
j ψj , the above relations turn

into

C�(x, y; t) =
∑

j,k=∓
C�

jk(x, y; t), (8)

where we have defined

C�
jk(x, y; t) = ψ�

j (x)ψk(y) − ψk(y)ψ�
j (x). (9)

By assuming commutativity of different discrete velocity components, that is [ψ�
j (x), ψk(y)] ∝

δjk , relation (8) simplifies to

C�(x, y; t) =
∑
j=∓

C�
jj (x, y; t). (10)

This is the ETCR to be conserved by the LB dynamics. Based on (3), one readily obtains
(hereafter all indices run over ∓)

ψ�
j (xj , t + dt)ψj (yj , t + dt) =

∑
k,l

T �
jkTjlψ

�
k (x; t)ψl(y; t) (11)

and

ψj(xj ; t + dt)ψ�
j (yj ; t + dt) =

∑
k,l

TjlT
�
jkψl(x, t)ψ�

k (y, t) (12)

where we have used the shortands xj = x + cj dt and yj = y + cj dt to indicate the end points
of the flight along the lightcone defined by cj . Since the discrete-velocity commutators obey

[ψ�
j (x), ψk(y)] = δjk[ψ�

j (x), ψj (y)],

we observe that, upon subtracting (12) from (11), the commutator at time t + dt , reads as
follows:

C�
jj (xj , yj ; t + dt) =

∑
k

T �
jkTjkC

�
kk(x, y; t) (13)

It is crucial to observe that yj − xj = y − x, so that the two commutators at times t and t + dt

refer to the same spatial separation r = y − x. It is now a simple matter to check that the
matrix elements (4) obey the sum rule

∑
k |Tjk|2 = 1, so that∑

j

C�
jj (xj , yj ; t + dt) =

∑
j

C�
jj (x, y; t) (14)

This proves the first ETCR in (5).
The proof of the second and third ETCR is even simpler, since the commutator at time

t + dt is a linear combination of [ψj(x, t), ψk(y, t)] (and the starred analogues).
Since at time t = 0 these are zero by definition, the commutator remains zero at all

subsequent times.
It is useful to recast the lightcone ETCR relations (14) into a more conventional Eulerian

form.
For this purpose, let us rewrite (14) in an explicit form as

C�
−,−(x − 1, y − 1; t + 1) + C�

++(x + 1, y + 1; t + 1) = C�
−,−(x, y; t) + C�

++(x, y; t) (15)
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where we have set dx = dy = c dt = 1 for simplicity. Next, we observe that the commutation
relations come in the homogeneus form:

C�(x, y; t) = const.W(|y − x|)
where W(r) is a generic function of the distance r = |y − x| (in actual terms, locality
forces W(r) to a Dirac’s delta, but our argument applies for any generic function of r). As a
result, (15) simplifies to

C�(r; t + 1) + C�(r; t + 1) = C�(r; t) + C�(r; t)

which is precisely the desired Eulerian form of the commutation relations. It is to be noted
that the homogeneity of the commutation relations is essential for the LB scheme to be ETCR
compliant.

And so is the mid-point rule in the time marching, exactly as in previous operator
approaches to quantum field theory [8]. A few words of comment are in order.

The peculiar aspect of the present kinetic formulation is that each discrete field ψj only
moves along its classical lightcone dxj = cj dt , notwithstanding the time-implicit formulation
(mid-point rule in the time marching) of the problem.

This is because, thanks to the kinetic representation (fields do not mix in the free-streaming
step), the mid-point rule does not generate a full-matrix problem, but a sequence of 2 × 2
linear problems at each lattice site, which are readily solved analytically to deliver the ‘dressed’
matrix coefficients Tij .

This is expected to bring significant simplifications in the analytical treatment, as well as
in symbolic computer implementations of the scheme.

3. The interacting Dirac equation

The relativistic Dirac equation for an interacting particle can be treated in a similar way, with
the important caveat that the ‘collision matrix’ is no longer constant in spacetime because
of the spacetime dependence on the electromagnetic field. For instance, in the case of
electromagnetic interactions, the Dirac equation can be cast in the following complex LBE
matrix form [4, 5]:

∂tψ
−(x, t) − c∂xψ

−(x, t) = ig−ψ− − iωcψ
+ (16)

∂tψ
+(x, t) + c∂xψ

+(x, t) = ig+ψ
+ − iωcψ

− (17)

where g± = q(� ± A),�(x, t) and A(x, t) are the electrostatic and vector potentials
respectively and q is the electric charge. In full analogy with the free massive case, one
derives a LBE scheme with the following transfer matrix elements:

T−,− =
{ (

1 − i
g+

2

) (
1 + i

g−
2

)
− m2/4

}/
M,

T+,+ =
{ (

1 − i
g−
2

) (
1 + i

g+

2

)
− m2/4

}/
M,

T−,+ = −T+,− = −im/M,

(18)

where we have set M = (1 + m2/4 − g−g+/4 − i(g− + g+). A simple calculation shows that
the relations |T−,−|2 + |T−,+|2 = 1, |T+,−|2 + |T+,+|2 = 1, still hold, provided that the matrix
elements are evaluated at the same spatial location x = y.2

2 One must also secure that mixed commutators remain zero at all times, that is C∗
jk(x, y; t + dt) = 0, j �= k. This

requires
∑

l T
∗
j lTkl = 0. Simple algebra shows that these relations are indeed fulfilled by the matrix elements (18).



Fast Track Communication F563

From the formal point of view, the basic difference with respect to the free theory is
that the matrix elements develop a spacetime dependence through the electro-magnetic field
A(x, t).

The same calculation as in the free case delivers

C�
jj (xj , yj ; t + dt) =

∑
k=±

T �
jk(x; t)Tjk(y; t)C�

kk(x, y; t) (19)

It is worth noting that, since we are dealing with a fermionic wavefunction, here the
symbol C stands for anti-commutators.

Due to the linearity of the equations, the procedure previously illustrated for bosonic
commutators carries over without modifications. In principle, the (x − y) separation
jeopardizes the ETCR’s, because we cannot expect the relation

∑
k T �

jk(x)Tjk(y) = 1 to
hold anymore, unless x = y.

Fortunately, locality of the commutation relations, i.e. the fact that W(r) = δ(r), saves the
day because it forces x and y to be the same, so that ETCR’s are again preserved. This indicates
that, at variance with the free-particle case, the interacting theory does require locality, besides
homogeneity, to make the LB scheme ETCR compliant.

4. Time marching

Time marching of the operator LB schemes (4), (18) proceeds by repeated iteration of the
transfer matrix T, that is, symbolically

ψ(t + n dt) = T nψ(t) (20)

where all spatial and velocity indices have been relaxed for simplicity. The specific form of
the matrix T n can be computed explicitly by taking the nth power of the matrix T.

However, owing again to the lightcone structure of the kinetic representation, a simpler
and more insightful algebraic formulation can be developed.

By applying the transfer matrix twice, we obtain (only the + component is reported for
notational simplicity, the − being specularly symmetric in space):

ψ+(x, t + 2) = a2ψ+(x − 2, t) + abψ−(x − 2, t) + baψ−(x, t) + b2ψ+(x, t) (21)

where we have set dx = dt = 1 and a ≡ T+,+ and b ≡ T+,− to simplify the notation. A further
iteration yields:

ψ+(x, t + 3) = a3ψ+(x − 3, t) + a2bψ−(x − 3, t) + 2ab2ψ+(x − 1, t)

+ (a2b + b3)ψ−(x − 1, t) + ab2ψ+(x + 1, t) + a2bψ−(x + 1, t) (22)

The hierarchical structure of the spacetime pattern corresponding to the LB scheme is
visualized in figure 1.

From this figure, we see that ψ+(x, t + n) collects contributions from all sites xnj ≡
x − n + 2j at time t, with j = 0, n − 1.

The contribution is given by the number of paths connecting (xnj , t) to (x, t + n) along
the tree, each path contributing a weight an−k∓bk∓ , where k∓ is the number of ‘up/down’ or
‘down/up’ flips (i.e. collisions) undergone by the walker to keep its discrete speed c± aligned
with the path. For instance, with reference to the free path {4210}, one has k+ = 0 and k− = 1,
because the + component flies undisturbed all the way from 4 to 0, whereas the − component
needs a flip at (x − 3, t) before it can fly aligned with path {4210}. As another example, it is
readily checked that for path {5310}, one has k+ = 2 and k− = 3.



F564 Fast Track Communication

Figure 1. The hierarchical spacetime dependence for the evolution of the ψ+ operator. Only three
time levels are shown for simplicity.

Indeed, the ‘+’ component flies freely in {53}, and needs two flips in {31} and {10},
whereas the − component needs a flip also in {53}, for a total of 3. With this type of book-
keeping, the time-marching relation (20) can be recast in the form of a ‘telescopic’ (multi-step)
path summation:

ψ+(x, t + n) =
n−1∑
j=0

Pjn∑
p=0

an−k+(p)bk+(p)ψ+(xnj ; t) + an−k−(p)bk−(p)ψ−(xnj ; t) (23)

where the set of Pjn paths connecting (x − n + 2j, t) to (x, t + n) is uniquely specified by the
hierarchical tree structure depicted in figure 1. Of course, this telescopic representation can
be applied over a number n > 1 of time slices only as long as the gauge field (�,A) does not
feel any appreciable back reaction from ψ within a time scale n dt .

For strongly interacting problems, a self-consistent time marching of both fields A and ψ

is needed.
At this point, it is worth distinguishing between the case of background versus self-

consistent interacting gauge fields.
The former does not require any equation for the gauge field, and can be handled with the

procedure discussed above.
The latter, on the contrary, requires a major extension, whereby the evolution equation for

operator wavefunction A(x, t) should also be cast in kinetic form. For the case where A(x, t)

is a classical field, this task can be in a straightforward manner achieved by importing existing
lattice schemes for classical wave-propagation [10].

The extensions to operator fields must secure compliance with the ETCR for bosonic
fields.

Although a detailed calculation shall be left to future study, the fact that the gauge field
obeys a wave equation (massless Klein–Gordon equation), with the simple addition of a local
source term, J = ψ+γψ , γ being the appropriate Dirac matrix, bodes well for the applicability
of the present work to the self-consistent interacting case as well.

5. Nonlinear extensions

It is worth asking whether the present analysis can be extended to nonlinear problems in higher
dimensions.
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Both items represent major extensions, and consequently here we focus on the former one
only. We start from the following generalization of (1):

∂+ψ+ = −iωcµ(ψ−) (24)

∂−ψ− = −iωcµ(ψ+) (25)

where ∂∓ = ∂t ∓ c∂x and µ() is a local nonlinear function of its argument. By acting with ∂−
and ∂+ on the first and second equations, respectively, and summing up, we obtain

∂2(ψ+ + ψ−) = iωc[∂−µ(ψ−) + ∂+µ(ψ+)]

with ∂2 ≡ ∂2
t − c2∂2

x .
This reduces to the nonlinear Klein–Gordon equation for the symmetric combination

� = ψ+ + ψ−, under the constraint

∂−µ(ψ−) + ∂+µ(ψ+) = const.µ(ψ− + ψ+). (26)

This is a functional differential equation for the unknown function µ(ψ). It can be written as

µ′(ψ−)µ(ψ+) + µ′(ψ+)µ(ψ−) = const.µ(ψ− + ψ+) (27)

where the prime denotes derivative over ψ .
Besides the expected linear solution µ(ψ) ∝ ψ , associated with the linear Klein–Gordon

equation, the above equation delivers nonlinear solutions in the form µ(ψ) = ekψ , with k both
being real and imaginary.

These generate sine-Gordon equations, whose corresponding LB form is

ψ+(x, t + 1) − ψ+(x − 1, t) = −im
µ−(x − 1, t) + µ−(x, t + 1)

2
(28)

ψ−(x, t + 1) − ψ−(x + 1, t) = −im
µ+(x + 1, t) + µ+(x, t + 1)

2
(29)

where the time step is made unit for simplicity (dx = c dt = 1,m ≡ ωc dt) and µ∓ ≡ µ(ψ∓).
Regrouping ‘future’ (t + 1) terms at the left-hand side, writing the equation for ψ∗

± at
position x and ψ∓ at position y, taking commutators at both left- and right-hand sides and
summing them up, we finally obtain

[ψ∗
+(x, t + 1), ψ+(y, t + 1)] + [ψ∗

−(x, t + 1), ψ−(y, t + 1)]

= [ψ∗
+(x − 1, t), ψ+(y − 1, t)] + [ψ∗

−(x + 1, t), ψ−(y + 1, t)]

− im

2
(R1(t + 1) − R1(t)) +

m2

4
(R2(t + 1) − R2(t)) (30)

where the first- and second-order residual commutators are defined as follows:

R1(t) = −[ψ∗
+(x − 1, t), µ−(y + 1, t)] + [µ∗

−(x + 1, t), ψ+(y − 1, t)]

− [ψ∗
−(x + 1, t), µ+(y − 1, t)] + [µ∗

+(x − 1, t), ψ−(y + 1, t)] (31)

R1(t + 1) = −[ψ∗
+(x, t + 1), µ−(y, t + 1)] + [µ∗

−(x, t + 1), ψ+(y, t + 1)]

− [ψ∗
−(x, t + 1), µ+(y, t + 1)] + [µ∗

+(x, t + 1), ψ−(y, t + 1)] (32)

and

R2(t) = [µ∗
−(x − 1, t), µ−(y − 1, t)] + [µ∗

+(x + 1, t), µ+(y + 1, t)]

R2(t + 1) = [µ∗
−(x, t + 1), µ−(y, t + 1)] + [µ∗

+(x, t + 1), µ+(y, t + 1)].
(33)
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It is readily checked that in the linear case µ(ψ) ∝ ψ,R1(t) = 0 by definition, whereas
R1(t + 1) = 0 due to cross cancellations. On the other hand, R2(t) and R2(t + 1) become
proportional to the corresponding linear commutators, [ψ∗

−(x + 1, t), ψ−(y + 1, t)] + [ψ∗
+(x −

1, t), ψ+(y − 1, t)] and [ψ∗
+(x, t + 1), ψ+(y, t + 1)] + [ψ∗

−(x, t + 1), ψ−(y, t + 1)], so that they
just contribute a proportionality constant. As a result, ETCR are indeed exactly satisfied.

In the general nonlinear case, however, ETCR are satisfied only to O(m2). This
is readily seen by noting that R1(t) = 0 still holds due to the operatorial identities
[f (a), b] = f ′(a)[a, b], [a, f (b)] = [a, b]f ′(b)).

However, to date, we have not succeeded in finding exact cancellations for R1(t + 1).
Thus, by Taylor expanding, we obtain R1(t+1)−R1(t) = O(m), so that the corresponding

deviation from ETCR is O(m2).
Since R2 is prefactored by m2, the corresponding contribution R2(t +1)−R2(t) = O(m3).
This proves that the overall residual commutator is O(m2).

6. Computational perspectives

The practical use of the LB scheme presented in this work for the numerical/symbolic
simulation of quantum field theories hinges upon the development of efficient strategies to
compute the n-step propagator T n. For a (1 + 1)-dimensional problem with N lattice sites and
two-sided nearest-neighbour interactions, T n is represented by a N × N matrix of bandwidth
2n + 3, whose elements are nth order polynomials of the matrix elements of T. As a result,
a naive matrix–matrix product approach becomes quickly very demanding, and alternative
methods to compute the action T n on ψ(0) without ever calculating T n itself (matrix-free
approach) must be devised.

Here again, a basic distinction between background and self-consistent gauge fields must
be made. For the former, the one-sided nature of the LB operator T permits indeed to devise
algebraic recipes, such as the path-summation expression (23). Another possibility, which
remains to be explored for the future, is the diagonalization of T and subsequent use of the
identity T nψ = λnψ , ψ and λ being the eigenvectors/values of T. The case of self-consistent
interactions, however, can only be handled step-by-step.

Given the Kth point equal-time correlator σ
(p1,p2...pK)

i1,i2...iK
(x1, x2 . . . xK; t) ≡ 〈

ψ
p1
i1

(x1; t)

ψ
p2
i2

(x2; t) . . . ψ
pK

iK
(xK; t)

〉
at time t, the corresponding correlators at time t +1 can be computed

in terms of T only. Even so, equal-time Kth order correlators are seen to require Pth order
convolutions of T, with P = ∑K

k=1 pk .
Since the operator fields ψ and A are ‘frozen’ at time t at this stage of the calculation, it

is quite possible that algebraic path-summation strategies can be devised as well at each time
step. However, to this point, this remains a conjecture which must be tested through detailed
computations.

Summarizing, the present LB technique faces with the typical difficulties of the operator
approach, with the potential advantage, though, of a simpler structure of the matrix
representation of the evolution operator T.

Whether such an advantage is sufficient to make LB competitive against state-of-the art
computational methods for quantum field theory, such as quantum and path-integral Monte
Carlo, remains an open issue for future research.

7. Conclusions

Summarizing, we have shown that the lightcone lattice Boltzmann discretization of the 1+1-
dimensional Dirac and Klein–Gordon equations is consistent with equal-time-commutation-
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relations . As a result, the LB scheme appears to be a suitable candidate for lattice simulations
of (1 + 1)-dimensional quantum field theories. Since these latter are all but a mathematical
nicety, with many applications in modern quantum physics [11], it is hoped that the present
work may contribute a new entry to the simulation methods for lattice quantum field theories.
Nonlinear extensions have also been presented in 1 + 1 dimensions for the case of the sine-
Gordon equations. However, in such a case, ETCR are found to hold only at second order in
the time step. Future work to extend the present procedure to general nonlinearities in d + 1
dimensions is certainly warranted.
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